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AVERAGE-CASE OPTIMALITY 
OF A HYBRID SECANT-BISECTION METHOD 

ERICH NOVAK, KLAUS RITTER, AND HENRYK WOZNIAKOWSKI 

ABSTRACT. We present an average-case complexity analysis for the zerofind- 
ing problem for functions from Cr([O, 1]), r > 2, which change sign at the 
endpoints. This class of functions is equipped with a conditional r-folded 
Wiener measure. We prove that the average-case complexity of computing an 
c-approximation is of order log log(l1/e), and that a hybrid secant-bisection 
method with a suitable adaptive stopping rule is almost optimal. This method 
uses only function evaluations. 

We stress that the adaptive stopping rule is crucial. If one uses a nonadaptive 
stopping rule, then the cost has to be of order log( 1/e) . Hence, the adaptive 
stopping rule is exponentially more powerful than arbitrary nonadaptive stop- 
ping rules. 

Our algorithm is a slightly simplified version of the hyrbrid methods pro- 
posed by Dekker in 1969 and Bus and Dekker in 1975. These algorithms are 
still considered as "the best algorithms for zerofinding" by Kahaner, Moler, and 
Nash in their book on numerical methods. 

1. INTRODUCTION 

Zerofinding is a classical problem of numerical analysis. Most of the results 
have been obtained for the asymptotic setting in which the order of convergence 
and the efficiency index are studied for methods consisting of an infinite number 
of steps. Convergence is usually guaranteed by assuming that a good initial 
approximation to a root is given, see Traub [13], Ortega and Rheinboldt [8], 
and Ostrowski [9]. 

In contrast to the asymptotic setting, (global) error bounds which hold after 
a fixed number of steps are studied in the worst-case setting. Usually this is 
done without assuming a good initial approximation. Instead, error bounds are 
derived for some classes of functions F. The class F is chosen in such a way 
that the error bounds tend to zero as the number of steps goes to infinity. 

The complexity of zerofinding in the worst-case setting is understood as the 
minimal worst-case cost of computing an approximation with error at most e 
for any function from the class F. A survey of worst-case complexity results 
can be found in Sikorski [12]. In particular, for a number of classes F, it is 
known that the bisection method is optimal and the worst-case complexity is of 
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order log(l/e). This holds, for instance, for the class 

F = {f E Cr([0, 1]) :f(O).f(l) < O}, 

and even for the subclass of COO-functions having only simple zeros. One 
may hope, however, that other methods, such as modifications of the secant or 
Newton method, should be significantly better than bisection "on the average". 
A survey of average-case results may be found in Novak and Ritter [7]. 

In this paper we prove that, indeed, a proper modification of the secant 
method is not only much better than bisection, but that it is almost optimal 
on the average. We deal with the average-case setting in which the error and 
cost are defined on the average with respect to a probability measure on the 
class F with r > 2 and with fixed boundary conditions at the endpoints. The 
assumption r > 2 is needed since we use an error formula for the secant method 
which depends on the behavior of the second derivatives. The case r < 2 is 
open. 

As the probability measure we choose a conditional r-folded Wiener measure. 
This measure is obtained from the classical Wiener measure by r-fold integra- 
tion of the paths and translation by suitable polynomials to fit the boundary 
conditions. For such a measure, the set of functions with only simple roots has 
full measure. However, we still have many "ill-conditioned" functions in F 
since the probability of 

f EF.- IIf"IIoo >U 
{ minx Ef l (O) lf,(x* ) |> 

is strictly positive for arbitrarily large u. For our analysis it is crucial to estab- 
lish upper bounds for this probability. 

We study methods which use function or derivative evaluations at sequen- 
tially chosen knots, the number of which is determined by a stopping rule. The 
stopping rule is nonadaptive if the number of knots is the same for all func- 
tions, and it is adaptive otherwise. The goal of the method is to compute an 
approximation x to a root of f E F with error at most e. Here the error is 
understood either in the root or in the residual sense. The root sense means 
that we take the distance between x and the nearest root of the function f, 
whereas the residual sense means that we take If(x)I . 

As is often done in numerical analysis, we do not use Turing machines or a bit 
model, but prefer to work with a real-number model having infinite precision. 
The average cost of a method is defined as the average number of function and 
derivative evaluations plus arithmetic operations and comparisons used by the 
method. Thus, the average cost is at least proportional to the average number 
of knots at which function or derivative evaluations are computed. As we shall 
see, for the hybrid methods presented in the paper the average cost is indeed 
proportional to the average number of knots. The complexity of zerofinding in 
the average-case setting is understood as the minimal average cost of computing 
an approximation with average error at most e. 

We prove that the average-case complexity is of order loglog(l/e) and a 
hybrid secant-bisection method with a suitable adaptive stopping rule is almost 
optimal. The same optimality result also holds for a hybrid Newton-bisection 
method. 



AVERAGE-CASE OPTIMALITY OF A HYBRID SECANT-BISECTION METHOD 1519 

We stress that adaptive stopping rules do not play a role in the asymptotic 
or worst-case setting. In the average-case setting, they are also not important 
for many linear problems, see Wasilkowski [14]. For zerofinding, which is a 
nonlinear problem, adaptive stopping rules are very important. It is known, 
see Ritter [10], that any method with an average error at most e needs at least 
about log(l/c) evaluations for some functions f from F. That means that 
methods with nonadaptive stopping rules must use about log(1/c) evaluations. 
To achieve the cost of order loglog(l/e), optimal methods must use adaptive 
stopping rules. It is well known by practitioners that methods which usually 
work fast do sometimes fail or yield comparatively large errors for some hard 
functions f. This is indeed confirmed by the average case analysis. This 
also proves that adaptive stopping rules are exponentially more powerful than 
nonadaptive ones. 

The adaptive stopping rules of the hybrid secant-bisection and Newton- 
bisection method are very simple. We just check whether the function value 
or the length of the interval which contains a zero is comparable to c. These 
adaptive stopping rules have one additional property. Namely, they guarantee 
that the error is at most c for every function f E F. This means that opti- 
mality of the hybrid methods is preserved even if the error is defined in the 
worst-case sense and with the cost defined in the average-case sense. 

2. PROBLEM FORMULATION AND MAIN RESULTS 

We study zerofinding for a class F of functions f: [0, 1] -R which de- 
pends on certain parameters. We denote the smoothness of functions f by r 
and assume that r > 2. We need to fix boundary values of f and its derivatives 
in order to equip F with a proper variant of the Wiener measure. We denote 
these boundary values by ai and bi, and define 

(2.1) F = {f E cr([O )]f()(0)=a_ f0)(l) =b fori=0 1, ...,r}. 

To guarantee that f- has a root, it is enough to assume that f(O) . f( 1) < 0, 
i.e., ao * bo < 0. To exclude the trivial case, we assume that 

f(O)=ao<0 and f(l)=bo>0. 

Let the space Cr([O, 1]) be equipped with the norm 

lif 11 = max{If lI l , ... ,lf (r)IIc,} 

where . * denotes the supremum norm, and consider the Borel a-algebra on 
the closed subspace F of Cr([O, 1]). The average-case setting is defined with 
respect to a Gaussian measure P on F. This measure P, which is called a 
conditional r-folded Wiener measure, is constructed from the classical Wiener 
measure in the following way. By r-fold integration of the Brownian paths we 
get a Gaussian measure, called an r-folded Wiener measure, on the class of 
functions g E Cr([O, 1]) with g(O) = ... = g(r)(0) = 0. Let p(g) denote the 
polynomial of degree at most 2r + 1 such that g - p(g) e F, i.e., g - p(g) 
satisfies the respective boundary conditions. By the translation g 4 g - p(g) 
of the r-fold integrated Brownian paths we obtain the conditional r-folded 
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Wiener measure P on F. Basic properties of P, plots of P-random functions 
as well as references to applications of r-folded Wiener measures to problems 
of numerical analysis are given in Novak and Ritter [7]. 

We now describe zerofinding methods. As usual in numerical analysis, an 
approximation to a root of f is obtained by computing function and possibly 
derivative values of f at sequentially chosen knots xl, ... , x,(j. The total 
number v(f) of knots is determined by a stopping rule. The stopping rule is 
called nonadaptive if v(f) takes the same value for all f E F; otherwise the 
stopping rule is called adaptive. For simplicity, we assume that at all knots xi 
we compute the Hermite information of order k < r, 

f[Xi] = (f(Xi), ... . f (k)(X,)) 

Here, k is fixed for a particular zerofinding method. The sequential computa- 
tion of the Hermite information starts at a knot 

X1 E [O, 1], 

and the selection of the remaining knots may depend on the previously com- 
puted data. This is formally described by mappings 

k ?(i- ) - (k+ l) [0 I i > 2. 

In the ith step the knot 

Xi = ik (f[xl], . , f[xi- ]) 

is selected and f[xi] is computed. Thus, the information 

(2.2) Nik(fk ) - (fk [Xi], *-i, f [Xi]) 

is known at the ith step. A decision to stop or to compute additional informa- 
tion is made after each step. This is formally described by mappings 

%k Ri'(k+l) { }i > 1 . 

The total number of knots which is used for the function f is given by 

v(f ) = min{i E N: %X(N1k(f )) = 1} 

Obviously, only the case v (f ) < xo for all f E F is of practical interest, 
although in the average-case setting, we may have v (f ) = oX for f belonging 
to a set of measure zero. After v = v (f ) knots have been computed, the 
approximation 

to a root of f is constructed, where 

Rk i'(k+ 1) _ 
[o, I], i > 1 . 

Summarizing, a zerofinding method Svk is formally given by a starting point 
xl, and by the mappings vik, xk, and qOk. For simplicity, we assume that 
these mappings are defined over the whole space. 
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For lower bounds we want to allow very general methods. The only restriction 
on the mappings vk, xfkr and 4k is Borel measurability. For upper bounds we 
present relatively simple methods and prove their optimality. 

The error of a zerofinding method Sk for a function f E F is defined either 
in the root sense 

Ar0(S>, f) = inf{ISv(f )-x*| x* E f-1(O)} 

or in the residual sense 

Are(Sk, f) - If(Sk(f )) I 

We simply write A in the statements which hold for Aro and Are. 

In ?3 we analyze a hybrid secant-bisection method. This method combines 
bisection and secant steps in a suitable way, and its computational cost is pro- 
portional to v (f). In particular, we prove the following theorem. 

Theorem A. There exists a constant a, depending only on the regularity r > 2 
and the boundary values ai and bi, with the following property. For any e E 
(0, 1/2), there exists a hybrid secant-bisection method Sv? with worst-case error 

supA(S?, f) <?6 
fEF 

whose average number of knots satisfies 

v (f ) dP(f )< l/ log((l + -v-)/2) @ loglog(l/,e) + a. 

In ?4 we prove that this hybrid method is almost optimal, even if we do not 
require the error bound for all f E F but only on the average. 

Theorem B. Let ,B > r + 1/2. There exists a constant y, depending only on 
,6, the regularity r > 2 and the boundary values ai and bi, with the following 
property. For any e E (0, 1/2) and any ZeroJinding method Sr with average 
error 

jA(Sr, f )dP(f) <6 

the average number of its knots satisfies 

J (f )dP(f) > 1/ log,8* loglog(1/e) + y. 

As already mentioned, the use of the average number of knots is critical here. 
For any method Sr with average error at most 6, the essential supremum of 
v with respect to P is of order log(l/e), see Ritter [10]. 

3. HYBRID METHODS AND PROOF OF THE UPPER BOUNDS 

We first describe some ideas which will allow us to find a hybrid method that 
is almost optimal in the average-case setting. 

To explain these ideas, we restrict ourselves for a moment to the error in the 
residual sense and consider a hybrid Newton-bisection method. This method 
consists of Newtdn and bisection steps performed alternatively. If the New- 
ton step cannot be performed, or if it gives an approximation outside the last 
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interval which contains a zero, we replace this Newton step by the bisection 
step. 

More precisely, the hybrid method is defined as follows. Let [so, to] = [0, 1]. 
Assume inductively that sij1 and ti I, with sij1 < ti I, as well as the values 
of f and f ' at these knots have been already computed. We now define xi, si, 
and ti . Assume that i is odd, and take p E {si-, ti I} with 

If(p)I = min{lf(si)I,0 If(ti)I}- 

If q = p- f (p)/f '(p) is well defined and satisfies q E (Si_I, ti-1) , then perform 
the Newton step xi = q. Otherwise, and for any even i, perform a bisection 
step xi = (si-I + ti- )/2. For arbitrary i, the new subinterval [si, ti] is given 
by [si, ti] = [siI, xi] if f(xi) > 0 and by [si, ti] = [xi, ti_] if f(x1) < 0. 
The stopping rule is simple. We stop if If(xi)I < e, and the output is xi. 
Clearly, this stopping rule is adaptive. It is well known that the error of the 
Newton method depends on the ratio between IIf " Il1o and the minimum of 
If'(x*)I overtheroots x* of f. For u>0,let 

F(u) = {f E F: lIf 1 x 00 } minx* Ef -1(0) If /(x*;)I -J 

Obviously, for large u we may need to perform many bisection steps to guaran- 
tee good properties of the Newton steps. It turns out that there exists an index 
i = i(u) such that the points xi, Xi+2, Xi+4, ... are computed by the Newton 
method and are not affected by the intermediate bisection steps, i.e., 

Xi+2(j+l) = Xi+2j - f(Xi+2j) /f '(Xi+2j) j = 0, 1 , ... . 

The index i(u) can be estimated by using a well-known result of Kantorovich 
[5]. Obviously, i(u) -* +oo as u +oo. It turns out that the total number 
of evaluations needed for an e-residual error is of order loglog(l/e) + i(u). 
We stress that it is not possible to determine such an index i(u) during the 
computation. 

To estimate the average number of evaluations, it is necessary to estimate the 
average value of i(u). This can be done by estimating the probability of the 
set F(u) . For the conditional r-folded Wiener measure P, see ?2, with r > 2 
we have 

P(F(u)) > 1- c(log u) 112/U Vu > 2 

with a positive constant c. (This follows from Lemmas 3.1 and 3.2 which will 
be proven later.) 

From this estimate of P(F(u)), it can be shown that the average num- 
ber of evaluations of the hybrid Newton-bisection method to compute an e- 
approximation in the residual sense is of order loglog(l/e). From Theorem B 
we conclude that this method is almost optimal. 

We do not present a proof of this result (though this was the starting point 
of our paper) because we are able to analyze an improved hybrid method which 
takes care of some drawbacks of the presented hybrid Newton-bisection method. 
We list these drawbacks. 

(a) We want to avoid the computation of the derivative and therefore want 
to replace the Newton steps by suitable secant steps. 



AVERAGE-CASE OPTIMALITY OF A HYBRID SECANT-BISECTION METHOD 1523 

(b) The number of bisection steps is too large. It seems reasonable to require 
that bisection steps are performed only at the beginning. That is, for each 
function there exists an index k such that bisection steps are not performed 
after k steps. 

(c) For the root criterion, we want to guarantee that the error is small. Hence 
it is not enough to find a function value which is small-instead we really 
need two function values f(xi) and f(xj) such that f(xi) . f(xj) < 0 and 
Ixi -xjI < 2e . See Alefeld, Potra, Shi [ 1 ] for a study of this error criterion in the 
asymptotic setting. The Newton method-as well as many other methods-does 
not have this property, even if the function f is very smooth. To achieve a small 
guaranteed error in the root sense by the Newton method, it seems necessary 
to compute the function values at some extra "auxiliary" knots. Although this 
preserves the optimal order log log( 1 /e) , the multiplicative constant is larger. 

We now describe and analyze a hybrid method which uses the ideas presented 
above and is free of the drawbacks (a), (b) and (c). 

Our method uses only function values, that is, the parameter k of ?2 is 
now zero. The method is well defined on each class F of (2.1), even with 
regularity r = 0 or 1, although the analysis requires that r > 2. The method is 
easy to describe and also can easily be implemented on a computer. Moreover, 
an average-case analysis of this method uses well-known facts about the secant 
method. 

The method is a hybrid secant-bisection method which consists of a combi- 
nation of secant and bisection steps. The method computes points xi E [0, 1] 
at which f is evaluated, and subintervals [si, ti] c [0, 1]. One always has 
xi E {si, t,} c {0, 1, xI, ... , xi} and f(si) < 0 < f(ti) with strict inequalities 
if si < ti. Moreover, xi E [si-1 , ti-1] and [si, ti] C [si-1, ti-1]. 

We give a formal definition of the method in a pseudocode together with 
some comments. The method depends on the error criterion and on the re- 
quired accuracy e > 0 via its adaptive stopping rule DONEi and its output 
APPROXi. These are very simple and given by 

DONEi := ((ti - si) < 2e) and APPROXi := (si + ti)/2 

if we consider the error in the root sense, and by 

DONEi := (jf(xj)j < e) and APPROXi:= xi 

if we consider the error in the residual sense. 
For the secant step, we compute 

SEC(x, y) x -(x -Y)/( f (x) - (y)) * f(x) if f(x) # f(y), 
undefined otherwise 

with x, y E [0, 1], and for the bisection step, we compute 

BISi:= (si- + ti-1)/2. 

In each step, a new subinterval 

[s*i-l1, xi] if f(xi) > 0, 
SUBi:= [xi, ti11 if f(xi) < 0, 

[xi , xi] otherwise 
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is constructed. The hybrid secant-bisection method is defined as follows: 

i =0; 

if -ao < bo then xo := 0 else xo := 1 fi; 

[so, to] := [0, 1]; 
while not DONEi do 

for] := 1, 2 do 

i := I+ 1; 

xi :=SEC(si-_ , ti-I); 
[si, ti] := SUBi; 

if DONEi then return APPROXi fi; 
od; 
repeat 

q :=SEC(xi, xi-I); 
if q = undefined or q 0 (si, ti) then break fi; 
i:= i+ 1; 

Xi := q ; 

[si, ti] := SUBi; 
if DONEi then return APPROXi fi; 

until ti - si > (ti3 - Si-3)/2; 

i:= i+ 1; 

xi := BIS1; 

[si, ti] := SUBi; 
od; 
return APPROXi; 

Here "break" causes the method to leave the repeat-until loop. An evaluation 
of f only occurs when SUBi is computed. The function values which are used 
in SEC are already known at that time. Each evaluation is preceded by a check of 
the stopping rule. Disregarding the stopping rule, the method works as follows. 
At the beginning and after each bisection step we perform two steps of the regula 
falsi starting from the endpoints of the respective subinterval [si- I, ti- I ] . Then 
we perform secant steps as long as they are well defined, lead into the current 
subinterval, and reduce the length of the subinterval by a factor at least 1/2 in 
every three steps. A bisection step is made if one of these conditions is violated. 

Note that this hybrid method could also be defined in terms of the mappings 
vi'? x?, and 00, see ?2. Clearly, x?, and therefore also v, depend on the 
accuracy e and the error criterion. Without loss of generality we may assume 
that e < min{l/2, -ao, bo}, which guarantees that f has to be evaluated at 
least once. Given e and the error criterion, we denote the resulting hybrid 
secant-bisection method by SiO. 

Since we halve the length of the subinterval [si, ti] at least in every fourth 
step, the hybrid method terminates for any f E F. In case of the root criterion 
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we have 
supv(f) < 4 [L/log2. log(l/e)J, 
fEF 

while the number of steps is no longer uniformly bounded over any class F in 
case of the residual criterion. However v(f) = O(log(l/c)) for any f e F. 
Clearly, the error of the hybrid method is at most c for both error criteria and 
every f e F. 

We show that the average value of iv (f ) is of order log log( 1/e) . The proof 
relies on a worst-case analysis for subsets F, c F, the subsets F, will be defined 
later, with the following properties: 

(i) the probability of F, is large, P(F,) > 1 - , 
(ii) the number of bisection steps of the method Sv? is bounded by c log( 1/a) 

for each f e F, . The constant c does not depend on the accuracy c or on 3. 
(iii) the number of secant steps is also small for f e F,; it is bounded by 

1/log((1 + v)/2). loglog(1/e) + c. log(1/a) 

with the same constant c. 
To prove this, we need a number of properties of the conditional r-folded 

Wiener measure P which is defined on the class F, see ?2. The constants cj 
and dj which will appear in our analysis will depend only on the regularity 
parameter r and the boundary values ai, bi, see (2.1). 

Owing to the construction of P, its mean p is the polynomial of minimal 
degree that interpolates the boundary values. The covariance kernel K of P is 
of the form 

(3.1) K(s, t)=10 (;)2 + du+L(s, t) 

for s, t e [0, 1], where L is a polynomial of degree at most r + 1 in each 
variable, see Sacks and Ylvisaker [1 1, p. 2060]. 

Lmma 3.1. There exist constants c1 > 1 and C2 > 0 such that 

( f sup if"f) 1{jS) t)S I >}) <Cl exp(-c2.u2) Vu>0. ({feF:~S I,E[0, 1] 

Here 0/0= 0. 
Proof. It is well known that for any exponent 0 < d < 1/2, with probability 
one the Brownian paths are Holder continuous with exponent d. Let B denote 
the Banach space of continuous functions on [0, 1] with Holder exponent 1/3. 
The construction of P guarantees that f " e B for f e F with probability one. 
Hence, the estimate follows from Ledoux and Talagrand [6, Lemma 3.1], who 
give an upper bound for the Gaussian measure of a ball in a Banach space. O 

Lemma 3.2. Let 

q(t) =K(t, t) m K(2, 2) (t ,t) - K(2, 0) (t t) 2 

see (3.1), and 

C3 =SUP 1 exp p(t)2 
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Then C3 < o and 

P({fEF: inf If "(X*)I<u,llfllko?v})<c33u.v Vu,V>O. 

Let 
1 ( ~~~p(t)2 

= o0gl (27r . K(t, t))1/2 " ( 2K(t, t)J 
Then c4 < o and 

P({ fEF: inf f/ (x*)l < u})< C4 U VU > 0 
X*Ef~lO 

Proof. Consider the joint distribution of f(t) and f"(t) . Its covariance matrix 
Q(t) and mean m(t) are given by 

Q(t) K(t, t) K(2 0)(t t) 
K(t = (2, ?) (t5 t) K(2,t2) (t, t)J 

and 
m(t) = (p(t), p"(t))T. 

Note that q(t) is the determinant of Q(t). Since P has full support in F, we 
have q(t) > 0 for 0 < t < 1 . Clearly, q is a polynomial, and therefore 

q(t) > min{t, 1 - t}di 

for a suitable di e N. Moreover, there is a positive constant d2 such that 

A(t) < K(t, t) +K (2,2)(t, t) < d2 * min{t, 1 - t}, 

where A(t) is the larger eigenvalue of Q(t). 
For 0 < t < 1, the density function h(t, *, *) of the joint distribution of 

f(t) and f "(t) is given by 

eX t1 ((=e ?-)T m(t) Q(t)-1 ((4' p)T - m(t)))'\ 
h(t 

4'C1)=27r .q(t)lI2 2 

We claim that h, extended by 

h(O,, = h(l, 0,)=O 

is continuous on the set 

A = [0, 1] x [- min{-ao, bo}/2 min{-ao, bo}/2] x R. 

Since Q(t) and m(t) depend continuously on t, the density h is con- 
tinuous on (O, 1) x ]R2. If (ti 4'i, if) E A tend to (O,4, ) E A, then 
limioo ll(4i, li) - m(ti)112 > I4 - aol > laol/2 and 

0 < lim h(ti, 4i, mi) < lim 1 * exp (a = -0. 
i-+00 ~i-oco 2ir .q(t,) 1/2 \8A(t1)/ 

Similarly, we conclude the continuity of h at (1, 4, ) E A. 
Define 

F1 = {f E F: inf If (x*)l <U, lf' io <} 
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and 
i-l1 

Ci = U {f E F: If "(k/i)l < u, If(k/i)I < v/(2i)}. 
k=l 

Then continuity of f" and the inequality If(x) I < v Ix - x *I for f E F1 yield 
00 00 

F1 c unlci~ 
j=1 i=j 

which implies 

P(F1) < liminfP(Ci) < liminf(i - 1) *2u v/i. sup sup sup h(t, 4, I) 
i--0 i-+0 ooo <t< 1 C41<v/(2i) 1?11<u 

< 2uv * sup sup h(t, O, t). 
0<t<1 I1ER 

For a fixed 0 < t < 1, we directly compute 

sup h(t, 0, ?1)= 27r 1q(t)12 * exp ( 2K(t . t) 
?JER 

Since K(t, t) < A(t) and since p(O) = ao and p(l) = bo are nonzero, we obtain 

limsuph(t, 0, ) = limsuph(t, 0, t1) = 0 
t- 0 pIER t-4 pIER 

and therefore 
c3= 2* sup suph(t, O, ) < oo. 

0<t<1 iER 

This completes the proof of the first estimate. 
Define 

F2 = {f E F: inf If'(x*)l < u} 

and 
i-l 

Di = U {f E F: If(k/i)I < u/(2i)}. 
k=l 

Arguing as in the first part of the proof, we find that 

sun 1 (p(t)2 
P(F2) < liminfP(Di) < Ni (2sruK(t, K)' 1 exp 2(t,t))U< . 

Remark 3.1. As a consequence of Lemma 3.2, the following properties hold 
with probability one on F. A function f E F has only simple zeros, and 
therefore the number of zeros of f is finite. A function f is strictly convex or 
strictly concave in small neighborhoods of its zeros. 

Now we define the sets F, which will be considered in a worst-case analysis. 
Let 

F(u, v, w) = {f e F: sup If "(S) -f "(t)I < u, 
s, tE[0,1 1 S - 

I1 

inf If/(x*)l > v inf If '(x*)l > w 
X*Ef 1(0) X*Ef1-(0) 

Define 
F, = F(u,3, v,3, w,), 
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where 

uj = (I/c2 * log(3c,/3))1"2, V - 3/(3c4), w6 = 6/(3c3 -(la, I + 1a21 + u6)) 

with the constants from Lemmas 3.1 and 3.2. 

Lemma 3.3. If 0 < 3 < 1, then 

P(F) > I1-. 
Proof. Observe that 

sup If "(s) - f "(t) < u 
s tE[O,1 

I 

implies 

(3.2) lf'Illoo < Iall+1a21+u. 

Therefore, 

P(Fu,v,w) >I (ffE F: sup I ()-f"0 
({~~S t,E[0, 1] IS - tl3 } 

- P({f x*ei(O) If(x*) < v}) 

- P({ fEF: f(0 If/"(x*)I <w, lf' loo <IaljI+a21+ u}) 

> 1 - c exp(-c2 * u2) - c4 _v -C3*w*(jajI+Ia2I+u) 

by Lemmas 3.1 and 3.2, and P(F6) > 1 - 3 follows. 0 

We are ready to analyze the behavior of the hybrid method S5? on the sets 
F6 as well as on the whole class F. We present a theorem whose part includes 
Theorem A. 

Theorem 3.1. There exist constants c5 and a, depending only on the regularity 
r > 2 and the boundary values ai and bi, with the following property. For 
any e E (0, min{ l/2, -ao, bo}) and for any 0 << 1/2 , the hybrid secant- 
bisection method Sv? satisfies 

sup v(f ) < l/ log((l + V5)/2) - Ioglog(l/e)+C log(C l /a) 
fEF, 

and 

jv(f ) dP(f ) < 1/ log((l + v)/2). loglog(l/e) + a. 

Proof. Let f E F,5, and disregard the stopping rule for a moment. Consider 
the infinite sequences of points xi, si, and ti which are defined by the hybrid 
method. Without loss of generality we assume that f(xi) $ 0 for all i. Let 

n = n65 = 4max {3 log2!u 1+1, I1og22(Ia2I+u6)1} 

and 1 = t s,- S> 0, and observe that 

(3.3) n, ? d, - log(l/a) 
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with a suitable constant d1 > 0. Since ti - si < (ti-4 - si-4)/2 for any i > 4, 
the length I of the interval [sn, t, ] is at most 

1 < 2-n/4 < v3/(2(1a21 + u3)). 

Let x* E [sn, tn] be a zero of f. For X E [sn, tn] anda suitable C E [Sn, tn], 

we have 

If (x)I = f (x*) + f "(O)(x - x*) + f "(C) - f (O) C 1/3( - X*) C1/3 
> vj - (ja2l + u,)1> v3/2 > 0. 

From f(sn) < f(tn) we conclude that f' is strictly positive on [Sn, tnfl. In 

particular, this means that x* is the unique zero of f in this interval. Similarly, 

if "(x)l = f"(0) + f"(x) - f"(?) X/3 < 11a21 + U3, x1/3 

If "(x)l = f ''(x*) + f (x) - f 
/(x*)1/3 

(X - X*)l1/3 ( 

> W - _ U/1/3 > w - u-52 -n/12 > 0 

where the strict inequality is due to the definition of n. Moreover, 

SUp if"(0) < 2(la21 + 
U4') <I 

Cl, C2E[sn, tn] f '(C2) - 
1)3 - 

In what follows we assume that f " is strictly positive on [Sn, tn]. The case 
f " < 0 can be studied analogously. 

For any two distinct points x, y E [sn, tn] the secant step 

q = SEC(x, y) = x - (x - y)/(f(x) -f(y)) - f(x) 

is well defined. The known error formula for the secant method yields 

q - x* = C(x, y)(x-x*)(y - x*), 

where C(x, y) = f"(Cl )/(2f '(2)) for some CI, C2 e [sn tn]. Observe that 

(3.4) 0 < Cx, Y) < 

and 

(3.5) Iq - x*j < 2min{lx - x* l, Y - xTl 

Define ei = x1- x* and li = ti- si, and let vi denote the sign of xi - x. 

Claim 1. Assume that xi2 = BISi12 or xi = SEC(xi1, Xi-2) with i > n + 2. 
Then SEC(xi, xi-1) E (si, ti)- 

Let q = SEC(xi, xi-,) and assume that xi-2 = BISi2 at first. Then xi_ 
and xi are computed by the regula falsi and (i-I, ai) = (-, -) by (3.4). 
Therefore, ti = ti-2 and q > x*, and (3.5) yields q - x* < (ti - x*)/8. We 
conclude that q E (xi, ti). 

Now assume that xi = SEC(xi_1, xi-2). If (i-2, ai-) = (-, +), then 
xi, q < x* and x* - q < ei/2 = (x* - si)/2. Hence, q E (si, ti) . In the cases 

(i-2, 0>i-1) = (-, -), (+, -), or (+, +), Claim 1 may be verified similarly. 
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During the computation each secant step xi = SEC(xi1, Xi12) is followed 
by a check of the condition li < li_3/2. We study this condition for the fol- 
lowing two cases: four consecutive secant steps or six steps with one bisection 
step. 

Claim 2. Assume that xij = SEC(xi_j_1 , xi-j2) for j = 0,..., 3 and 
(a-., 1ri) E {(-, -), (+, -), (-, +)} with i > n + 5. Then li < li-3/2. 

If (i-I, vi) = (-, -), then (Oi-5, ... , .i-2) = (+, -, -, +) by (3.4). 
Therefore, [Si, ti] = [Xi, Xi-2] and [Si-3, ti_3] = [Xi-3, Xi-5J, and (3.5) im- 
plies 

1i = ei + ei-2 < (ei3 + ei-5)/2 = li-3/2. 

In the cases (a-1, vi) = (+, -) or (-, +), Claim 2 may be verified similarly. 

Claim 3. Assume that xi = SEC(xi_, xi-2) and xi-j = BISi-j for j = 3, 4, 
or 5 with i- j > n. Then ij < li_3/2. 

If xi-3 = BISi.3, then we already know that (ai-2, 7i- I , ai) = (- -+) 
and ti1- = ti-3. Therefore, li3 > ei-2 + ti3 - x* and (3.5) yields 

li = ei + ei-I < (ti3 - x*)/8 + ei-2/2 < lij3/2. 

A similar argument works for j = 4 or 5. 
As a consequence of Claims 1-3 we get the following. If xi, = BISio for 

io > n, then no further bisection step will be made. Indeed, the next two steps 
1o + 1 and io + 2 must be performed by the regula falsi. Then the step io + 3 
will be done by the secant method because of Claim 1. The steps io + 4, io + 5, 
and io + 6 are secant steps by Claims 1 and 3, and (aio+5, aio+6) = (-, +). 

Finally, the step io + 7 and all the remaining steps are secant steps by Claims 
1 and 2. 

Note that the lack of bisection steps for i > io implies that the sequence 
aio+I, aio+2, ... does not contain three consecutive + or three consecutive -. 

Hence, li+2 < ei+2 + ei, and (3.5) implies 

(3.6) li+2<5/4ei Vi>iO+1. 

To find an index i such that 1i < 2e, we consider signs of (an, an+,). Let 
M = (1 + v5)/2, and assume first that 

(CTn, Un+l ) E{(E)E(E-E(E+} 

If one of the knots xn, ... , xn+5 is computed by bisection, then (3.6) holds 
with io = n + 5. Otherwise, xi = SEC(xi11, xi-2) for i > n + 2 by Claims 
1 and 2, and the sequence an, cn+i, ... does not contain three consecutive + 
or three consecutive -. Hence, (3.6) holds with io = n + 5 in both cases, and 

ei < e,_ I ei-2/(21) Vi > n + 8, 

follows from (3.4). Clearly, en+6 en+7 < 1. Using the well-known direct esti- 
mate for ei, we have 

(3.7) min{i E N: ei < e?, i> n + 6} < l/ logM * loglog(l/e) + n + d2 

with a positive constant d2. From (3.6) we obtain 

(3.8) min{i E N: li < 2e} < l/logM- loglog(l/e) + n + d2 + 2. 
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Now we assume that 
((ni,, Jn+1) = (+ +) 

In this case there exists io > n + 1 such that xio = BISio, and no further 
bisection step is made. Clearly, 

ei < ei-1e1_2/(21) Vn + 2 < i < io, 

while we only know that e10 < 1/2. However, 

en> en+1 > ?. > e10-I > min{e1o0,1 e1o} > ej0+i > ej0+2 > ... 

which implies 
ei0+3 < ei0+2ei0+1/(21) < e10_ e10_2/(21) 

if io > n + 1 and 

eio+4 < ej0+3ej0+2/(21) < ej0+3eji0_/(21). 

Finally, 
ei < ei-1e1_2/(21) Vi > io + 5. 

The estimates above show that we lose at most three secant steps because of the 
bisection step. Therefore, 

(3.9) min{i E N: ei < e, i > n} < /logM. loglog(l/e) + n + d3 

with a constant d3 > 0. 
Let A = x* - Sn . Observe that 1i < A +ei holds for n < i < io and i > io + 3. 

If A < , then ei < e with i > n implies li+2 < 2e, and (3.9) yields 

(3.10) min{i E N: 1i < 2e} < I/logM. loglog(l/e) + n + d3+ 2. 

Consider the case A > e . If n + 3 < i < io and ei3 < e, then 

11 A _ _ _ e_ _ 

- ~~> > 1/2. 
li-3 A + e; 3 >e + e -3 

Hence, (3.9) shows that 

io < I/logM loglog(l/e) + n + d3+ 4, 

and we get 

(3.11) min{i E N: l1i < 2e} < 1/ logM. loglog(1/e) + n + d3+ 7, 
using (3.6). 

Combining (3.3), (3.8), (3.10), and (3.1 1), we obtain 

min{i E N: li < 2e} < 1/logM loglog(l/e) +d4* log(l/3) 

for any f E F3 with a suitable constant d4. For the root criterion, this yields 
the needed worst-case estimate on SUpfEF6 v(f). For the residual criterion, 
(3.2) yields 

If(xi)I ? Ilf I'loo * ei < (la, I + la21 + (1/c2log(3cl/3))1/2) * ei. 

Thus, we terminate for the residual criterion if ei = 0(e/ log 1/) . We get the 
needed estimate from the root criterion with e replaced by O(e/ log I/) . 

We now estimate the average value of v (f ) over the class F. We know that 

sup v(f) < A+ C5log(1/3) 
fEF6 
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for any 0 < 3 < 1/2, with a positive constant c5 and A = 1 / log M. log log( 1 /c). 
Let B = [A + 1 + c5 log 21 . Assume that n > B and define 

3 = exp(-(n -A- 1)/C5). 

Then 3 < 1/2, and v(f) > n implies f ? F3. Hence, P(v(f) > n) < 3 
follows from Lemma 3.3, and we finally obtain 

00o 00 

/v(f )dP(f) = ZP(v(f) > n) < B - 1 + P((f) > n) 
n=1 n=B 

00 

< B - I + E exp(-(n - A - 1)/c5) < A + a 
n=B 

with a suitable constant a. O 

4. PROOF OF THE LOWER BOUNDS 

In this section we prove Theorem B. We start with a lemma concerning in- 
terpolation by polynomials. As in ?2, for g E Cr([O, 1]) denote 

g[s] = (g(s) , ... , g(r) (S)) 

For 0 < s < t? 1, let p(g; s, t) be the polynomial of degree at most 2r + 1 
which satisfies 

p(g; s, t)[s] = g[s] and p(g; s, t)[t] = g[t]. 
Lemma 4.1. Let r > 1. There exists a constant L = L(r) > 0 such that 

sup Ig'(X) - p'(g; s, t)(x)l < L (t -S)r-l . sup lg(r)(X)l 
s<x<t s<x<t 

for any g E Cr([O, 1]) and 0 < s < t < 1. 
Proof. The operator g F-* p(g; 0, 1) is linear and bounded on Cr([O, 1]). 
Hence, there is a constant L > 0 such that 

lig(r) p(r)(g; 0, 1)loo < L/2* .1g(r)||00 

for any g E Cr([0, 1]) with g[0] = 0. For an arbitrary g E Cr([0, 1]), let 4 
denote the Taylor polynomial of degree at most r with k[O] = g[0]. Then 

11g(r) - p(r)(g; 0, 1)11 00 = 11(g - k)(r) - p(r) (g - O0, 1) 1100 

< L/2- 1I(g - 4)(r)II00 < L |1g(r)|I0.. 

For 0 < s < t < 1, let T = t - s, and define g(z) = g(s + z T)/Tr, 
z E [0, 1]. Then 

gk(i)(Z) = g(i)(S + Z*- T) * TJ - r - j =I,1 ..,r 

Therefore, p(g; s, t) = p(g; 0, 1) . Hence, 

sup I g(r) (X) - p(r) (g; s5, t) (x) I 
s<x<t 

- SUp Ig(r)(z) _ p(r)(g; S, t)(z)l = llg(r) _p(r)(q; 0, 1)1100 
O<z<1 

<L*ljg(r)ll00=L* sup lg(r)(X) . 
s<x<t 
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Since g' - p'(g; s, t) has a root of multiplicity r at s, we have 
Tr-1 

sup jg'(x) -p'(g; S, t)(x)l< Tr-I* sup Ig(9)(X) p(r)(g; s, t)(X)j 
s<x<t (r - 1)! s<x<t 

< L.TrI- * sup jg(1)(x) 
s<x<t 

which completes the proof. 0 

We also need the following lemma on the absolute value of a Gaussian ran- 
dom variable. 

Lemma 4.2. There exists a positive constant K1 such that 

E(IZI) > K1. max{ImI, a} 

for any Gaussian random variable Z with mean m and variance a2. 
If additionally m :$ 0 or a :$ 0, then there exists a positive constant K2 such 

that 
Prob({IZI < u E(IZI)}) < K2 *u Vu >O. 

Proof. Since E(IZI) is a convex and even function of the mean m, we get 
E(IZI) > K1 a-C, where K1 = (271/2 fv - exp(-v2/2) dv < 1. Moreover, 
E(jZj) > jE(Z)j = iml, and the first estimate follows. 

It is sufficient to show the second estimate for 0 < u < 1/2. The estimate is 
obvious for a = 0, and it remains to consider the case a = 1 and m > 0. If 
m< l,then E(IZI) <m+K <?2, and 

Prob({ IZ I < u * E(IZ 1)}) < 4(27r)- 1/2. u. 

If m > 1, then E(jZD) < 2m, and Prob({IZI < u.2m}) is maximal for 
m = 1 . Therefore, the above estimate also holds in this case. 0 

For fixed regularity r > 2 and boundary values ai, bi we consider the con- 
ditional r-folded Wiener measure P on the class F defined in ?2. We also fix 
f > r + 1/2. In what follows, we use some constants cj and dj which only 
depend on the parameters ai, bi, r, and fl . 

We can choose a constant cl > 0 such that the class 

G= {gEF: IIgIl < ci} 

satisfies 

(4.1) logfl + log(r + I/2) < P(G)2 < 1. 
2 log/5l 

Indeed, since P(G) 1-+ for cl -x oc and since the left-hand side of (4.1) is 
smaller than 1, we can satisfy (4.1) for large cl . Recall that by IgII we mean 
here maxo<j<r 1g(i)llo. 

We first consider information operators Nir that use Hermite information of 
order r, see (2.2). Without loss of generality we assume that Nir uses different 
knots from (0, 1) for any function from F. Since the knots usually do not 
depend monotonically on the step number, we let 

O < Zi,1(y) < * * < zi,i(Y) <1 

as the increasing rearrangement of the knots used for f E F, where Nir(f) = y. 
We also set zi,o(y) = 0 and zi,i+ (y)= 1. Observe that the knots zi,j(y) may 
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only depend on N[r 1 (f), i.e., on the data which are computed in the first i - 1 
steps. 

Let f E F be any function with N[(f) = y. It is well known that the 
conditional measures P( * Ir = y) are Gaussian with the following proper- 
ties. On each of the subintervals [s, t] = [Zi,j-l(Y), zi,j(y)], the mean of 
P( INir = y) is given by the polynomial p(f; s, t). Function evaluation at 
x E [s, t] has variance 

j (f (x)-p(f; s, t)(x))2dP(flNir = y) 

(4.2) = 1 ((x-s) (t-x) 2r+I 

(2r + 1)(r!)2 t - s 

If x, v E [0, 1] lie in different subintervals, then function evaluation at x and 
v are independent with respect to P( Ir = y) . 

Consider a zerofinding method S[ = o Nir that uses a fixed number i of 
knots for any function from F. Given the data Nir = y, the method determines 
a point x from [0, 1] as an approximation to a root, and the average residual 
error is the mean of the absolute value of a Gaussian random variable. If 
x E [s, t] = [Zi,j-i(y), zj,j(y)], the average residual error is bounded from 
below by 

ei,j(Y) = inf lFf(x) Id(f IN = Y) 

Since x is in some subinterval, the average residual error is bounded from 
below by 

ei (y)= mmn ei,j(y). i 
j=1,2,...,2i+ 

I 

The following lemma relates a lower bound on ei, j(y) in terms of the bound- 
ary values of the function at the respective subinterval. 

Lemma 4.3. There exists a positive constant c2 such that for any information 
operator Nir and any g E G we have 

ei, j(y) > Cr+112 i min{jg(zj, j_l (y))j 
j 
g(z, j(y))j}r+112 

where y = Nir(g). 
Proof. Let [s, t] = [zi,j-l (y), zi,j(y)] and p =p(g; s, t). Assume that x E 
[s, t]. The conditional mean and variance of f(x), given Nir = y, are equal 
to p(x) and a2(x), the latter defined by (4.2). Clearly, 

a(x) > d 1/2 *min{x - s, t - xir+1/2 

with d, = (2r + 1) 1 (r!)-2. Lemma 4.1 and IgII < cl imply that 

sup Ip'(x)I < d2 
s<x<t 

with d2=cl.(L+ 1). 
Let M = min{Ig(s)j, Ig(t)I}. If 

min{x - s, t - x} < M/(2d2), 

then 

(4.3) Ip(x)I > M-M/(2d2). sup Ip'(x)I > M/2, 
s<x<t 
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and otherwise 

(4.4) a"(x) > d 112d2r- 1/22- r- 1/2 . Mr+ 11/2. 

From Lemma 4.2 we know that 

J If(x)j dP(fjN[r = y) > K1 * max{lp(x)l, a(x)}. 

Hence, M < IIgj0 < cl, and (4.3) and (4.4) imply 

f jf(x)I dP(fjNir = y) > C2r+1/2. Mr+1/2 

for a suitable constant c2 > 0. O 

The distribution of ei(Nir(g)) on the class G is studied in the following 
lemma. 

Lemma 4.4. Let fi(i) = >J$1 (r+ 1/2)1 . There exists a positive constant C3 such 
that for any information operator N[ we have 

P({gEF:ei(Nir(g)) <uf(i)}nG)<C3*i-u Vu>O. 
Proof. We prove the lemma by induction on i . Lemma 4.3 and N(f (f f[xl] 
imply that 

P({e1(Njr(g)) < Ur+1/2} n G) < P({c2* min{laoI, If(xl)I, Ibol} < u} n G). 

Clearly, 

di O<x<l F If(x)I dP(f ) > 0, 

and Lemma 4.2 implies 

P({If(xi)I < u/c2}) < K2/(c2dl) . u. 

Hence, 

(4.5) P({ej (Nr(g)) < u4(1)} n G) < d2 * u 

for any u > 0 with a suitable constant d2 > 0 
Let y = Nir(g) for g E G. In the next step i + 1, we evaluate p =g 

where 
= 'iW+l(Y) E (Zi,j-1(Y) Zi,j( Y)) = (s5 t)- 

Clearly, 

Oinxf<s If(x)I dP(flNir+1 = (y, p)) > ei(y). 
t<x<l 

By Lemma 4.3, we have 

inf If(x)I dP(flNir+ = (y, p)) > C2r+12 _min{jg(s)j, jg(4)j}r+1/2 S<X<4 F 
and 

inf I f(x) I dP(fIl N[+ = (y, P)) > C2 1 * min{|g(t)I , |g(Q)|}r+l/2 
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This implies that 

ei+I (Nir+I (g)) = ei+i ((y, p)) 

> min{ei(y), Cr+112. min{jg(s)l, jg(t)j, !gQ)j}r+lI2}, 

and therefore 

P({ei+I (N[r+I (g)) < (u * ei(y))r+l/2} n GINir = y) 

< P({e1(y) < (u - ei(y))r+l/2} n GINir = y) 

+ P({min{jg(s) j, Ig(t)j} < u * ei(y)/c2} n GINir = y) 
+ P({Ig(c)I < u * e1(y)/c2} n GINir = y). 

Assume that e1(y) > 0, and let h(y) = fF If(g)I dP(flNir = y) . Clearly, 

ei(y) < min{laol, I bol, I g(s)l, . g(t)j, h(y)}- 

If 0 < u < min{c2, min{laol, lb0I}(-2r+l)/(2r+l)}, then Lemma 4.2 yields 

P({ei+l (N[r+l (g)) < (u * ei(y))r+112} n GINir = y) 

? P({lg(g)j < u * e1(y)/c2} n GINir y) 
? P({fIf() I < u - h(y)/c2}INr = y) 
? K2/c2 u. 

Hence, 

(4.6) P({ei+l (NTr+l (g)) < (u * ei(y))r+l/2} n GiNir = y) < d3 - u 

for any u > 0 with a suitable constant d3 > 0. 
Define C3 = max{d2, d3}, see (4.5). From (4.6) we get 

P({ej+I (NTr+I (g)) > (u. Uf8(i))r+l/2} n G) 

= J|T(F) P({ei+l (N[+l (g)) > (u U*i(i))r+l/2} n GiNi[ = y) dNi[P(y) 
N(F) 

y }P({ei+l (Nir . (g)) > (u * ei(y))r+l/2} n GINir = y) dNirP(y) 
J ej(Y)>Ufl(i) } 

> ( (P(GINir = y) - C3 * u) dNirP(y) 
{ei(Y)>ufl(') 

> P({ei(Nir(g)) > fl1 n G) - C3 * u 

Since f,(i + 1) = (1 + ,B(i)) * (r + 1/2), we obtain by induction 

P({ei+l (Nfr+l (g)) > u f(i+l n G) > P({ej (Nlr(g)) > ufl(1)} n G) - C i * u 
> 1C3 - U - C3 u= 1-C3 (i+ )U. 

This completes the proof. n 

We are ready to prove Theorem B. It is enough to prove that for any 3 > 
r + 1/2 there is a positive constant A such that for any zerofinding method Svk 
with 

(4.7) jv(f)dP(f) < n 
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we have 

(4.8) JA(Sk, f)dP(f) > F 

We first consider the error Are in the residual sense. Obviously, it is sufficient 
to consider zerofinding methods Sv(f ) =$(f)(Nr(f)(f)) which use Hermite 
information of order r. Let 

Ai = {f: v(f) = i} = (N[>1(Bi) 

with a Borel measurable set Bi c R' (r+i ) Then (4.7) yields 
00 

Z j'P(Aj n G) = j v(g)dP(g) < n. 
j=1 

Take m = Fn/P(G)21 and p = P(G) - (1 - P(G))/m. There exists an index 
i E {, ..., m} such that 

P(A1nG) >p. 

Indeed, if this is not the case, we have 

m m 

n>jZ>jP(AjnG)+(m+ 1). P(G)- P(AjnG) 
j=1 j=1 

> m * (m + 1)/2 *p + (m + 1) * (P(G) - m p) > (m + 1) P(G)2 > n, 

which is a contradiction. 
For such an index i, let 

w = (P(Ai n G)/(c3 * i))fl(i) 

where C3 and ,B(i) are chosen as in Lemma 4.4. Then, using Lemma 4.4, we 
have 

Are(Svr f ) dP(f) > j e,(y) dNrP(y) > j ei(N[r(g)) dP(g) 
F B ~ ~ ~~~i AinG 

= P({e1(Nir(g)) > v} n Ai n G) dv 

w 

> JW(P(A nG)-C3iv1/fl('))dv 

= P(Ai n G)/(l + fl(i)) * (P(A1 n G)/(c3 * W))f(i). 

Observe that for suitable positive constants d, and d2 we have 

i < d1 n , 

P(Ai n G) > d2/n, 

/1(i) < (2r+ 1)/(2r- l).(r+ 1/2)1 < 5/3.(r+ 1/2)'. 

Therefore, 

jAre(sr, f ) dP(f ) > d2/n . 3/10(2/(2r + l))d,l* n. ((d2/(dlc3))/n2)fl(i). 
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Thus, it remains to show that 

(4.9) f,(i) - logn < d3 *fn 

for some positive constant d3 > 0. 
Using (4.1), we can find a positive constant d4 such that 

log /3(i) < i - log(r + 1/2) + log(5/3) < n * log(r + 1/2)/P(G)2 + d4 
< n * log fl .2 log(r + 1/2)/(log f, + log(r + 1/2)) + d4. 

Clearly, for some positive d5 we have for any integer n, 

loglog n < n * logfl - (logfl - log(r + l/2))/(log,B + log(r + 1/2)) + d5. 

Hence, 
log f/(i) + loglog n < n * log fl + d4 + d5 

and (4.9) follows. This completes the proof of (4.8) for the error Are. 
We now consider the error Aro in the root sense. Consider an arbitrary 

method Sk which satisfies (4.7). We relate the average error of Sk in the root 
sense to the average error of a method Sk+ in the residual sense. Let z = 0 
if laol < Ibol, and z = 1 if laol > IboI. Then Sk is defined by 

v+l(f) z otherwise. 

We have 
Are(S+,f ) < min{laol, lboll Vf E F, 

and 

Are(sk+ f) u.Aro(Svk f) Vf E F :Ilf ' < u. 

Since 8k uses at most n + 1 knots, the proof for the error in the residual 

sense yields 

Alre(?vk1 f ) dP(f ) > )flf+l 

Therefore, 

jAro(Sk, f)dP(f) > l/u Are(Sk+l, f)dP(f) 
F . {l~~~~~~lf 16o<ul 

> l/u .)fln+l - l/u.P({f E F: lIf'1Ko > u}). min{laol, lboll. 

Lemma 3.1 of Ledoux and Talagrand [6] states that there exist positive constants 

d6 and d7 < 1 such that 

P({f e F: Ilf 'lloo > u}) < d6d2 Vu . 

We choose 

U = ((fn+l log(l /I) + log(2d6 min{Iaol, 1boI}))/ log(l /d7)) 1/2 

to obtain 

|Aro( (vk , f ) d P(f ) > 1/ (2u) * fln+1 > n 

with a suitable constant 2 > 0. This completes the proof of (4.8) and of 

Theorem B. D 
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